EWF / March 2012

Quick presentation of Eiffel Web Framework
March the 15th, 2012

EWF what i1s that?

EWTF stands for Eiffel Web Framework

Becoming the common platform to build web
application with Eiffel.

Server application runs on any platform/HTTP
server thanks to the Connectors

Also provide utility, client, ... components

EWF : community project

This is fully open source

Written in void-safe Eiffel.
Works with ISE Eiffel 6.8, 7.0, 7.1
Tested on Windows, Linux,
with apache2, iis, CGI, FastCGI
and EiffelWebNino

Home page:
http://eiffel-world.github.com/Eiffel-Web-Framework/

Main contributors:

Jocelyn Fiat and Javier Velilla

http://eiffel-world.github.com/Eiffel-Web-Framework/

. Platform and
e e s
independant

O
-------------------------------- o o
Y e B [°
Gateway . CGlI
interface i i (< WSF /‘_/—\/
Apachﬁé "'_> FCGI
e | [scelj
= ~ | EWSGI Eiffel
mod_ewsg Connectors . .
(apache2 AppllCathn
: j .W Eiffel
i '5/' Web
| (Eiffel Web o Nino ?;Z?Svray T~ T~
Nino J™ , Interface I
L L . g _______) |

O Storable, XML, _
httpd / EUEEY JSON, SOS, Persistence
server nterface NoSQL, Abel, Obo
Connectors

EiffelStore, ...

Also client side

Also provides utility, client, ... components

http client (simple client based on libcurl)
error

CONneg: Content negociation

URI template /order/{order-id}

http: for status code constants and related

encoder: base64,url,html,xml,json,utf8,...

Main class for server

Note: we dropped the WSF__ prefix in those slides

REQUEST : access data related to the http request
RESPONSE : media to send data back to the client
HTTP_HEADER : user friendly HTTP header builder

REQUEST ROUTER,

REQUEST_ HANDLER, and
REQUEST_HANDLER_CONTEXT

SERVICE and DEFAULT_SERVICE_LAUNCHER

Server
Service

Execute request handling

Service

deferred class WSF_SERVICE
feature -- Execution

execute (req: WSF_REQUEST; res: WSF_RESPONSE)
deferred
end

class MY_SERVER
inherit WSF_SERVICE
create make_and_launch

feature
make_and_launch

local
s: DEFAULT_SERVICE_LAUNCHER

do
create package_manager.make (package_root)
create s.make_and_launch (agent execute)

end

-- implement " execute'

Server
Request

request data coming from the client

REQUEST

WSF_REQUEST

- meta variables (see CGI meta variables)
also available as functions: path_info, content_type, request_method, ...

- query parameter(s): extracted from QUERY STRING
- form parameter(s) and uploaded_ files

- COOkie(S)Z extracted from input_data

- raw_input_data if enabled and input data processed ...

- SCI‘ipt_IlI‘l (..) to return url related to current query

Note: many plural functions return ITERABLE [WSF_VALUE],
to allow other WGI implementations to use LIST, HASH_TABLE,
or any DS__flavours

REQUEST

WSF_REQUEST ../..

- wgi_connector: WGI_CONNECTOR

Even if EWF is portable, an application might want to know the
underlying connector have adapt its behavior, or display more
information.

- execution_variable(s): in addition to other variables and
parameters, this can be use to keep some data globally associated to the
request. A usual need would be SESSION, or Authorization which is
computed once.

-mime_handler (..) and register_mime_handler (..)

The mime handler are used to handle the input data according to the
content-type (multipart_form_data, application/x-www-form-urlencoded). This allow
the user to replace default behavior and register new (XForm, ...)

REQUEST

WSF_REQUEST ../..
- input: INPUT_STREAM
- chunked_input: detachable CHUNKED_INPUT_STREAM
-is_chunked_input: BOOLEAN

Access to the input stream, either normal or chunked depending on the input
transfer encoding.

So far, the INPUT _STREAM does not provide direct access to the underlying
socket, pipe, file, ... however it provides read__character, read_string, ...

To be discussed...

input.associated_ file: detachable FILE could be an option. Either it is available
or not ...

Server
Response

sending back to the client

RESPONSE

WSF_RESPONSE

- set_status_code
Depending on the connector, the status code can be sent or not

- put_header(_*)

3 Methods to put http header data

- put_string (string)

Put string to the client

- put_substring (string, start_index,end_index)
Put substring to the client (mainly for performance)

- flush

Flush the data, in case there is any buffering

/..

RESPONSE

WSF RESPONSE
/..
- put_chunk

When "Transfer-Encoding: chunked', put a chunk of response

- put_response (RESPONSE__MESSAGE)

Put an object containing status code, header and content to be sent
- redirect_* (..)
Various user friendly methods to send a redirection to the client

So far no direct access to the eventual output stream/socket/file/ ...
to be discussed for future version

Server
Request dispatcher / Router

dispatch request according to the request uri

REQUEST _ROUTER... 1/4

Goal: Provide friendly components to dispatch requests
according to the request URI

Examples:
- GET /order/123 -> return order identified by 123

- POST /order/ -> create new order
- POST /order/123 -> modify order identified by 123

Do it yourself thanks to REQUEST.request_urti,
or use the Router components

REQUEST _ROUTER.. 2/4

The WSF library provides (for now) 2 kinds of router

- REQUEST_URI_ROUTER

router using simple URI : equivalent to starts_with (..)

- REQUEST_URI_TEMPLATE_ROUTER

router using URI Template: matching the URI template such as
/order/{order-id}

How touse ? ...

REQUEST ROUTER.. 3/4

Inherit from URI_ TEMPLATE ROUTED_SERVICE
define router, create_router, and setup_router

For instance

setup_router

do
router.map_with_request_methods (/orders/{order-id},

orders_handler, <<"GET", "POST">>)

router.map_with_request_methods (/orders/,
new_orders_handler, <<"POST">>)

router.map_with_request_methods (/orders/,
all_orders_handler, <<"GET">>)

end

Just "map" a resource uri template, with a request handler, and precise the
allowed request methods. o/

REQUEST ROUTER.. 4/4

And then handler should implement

execute (ctx: REQUEST_URI_TEMPLATE_HANDLER_CONTEXT;
req: WSF_REQUEST;

res: WSF_RESPONSE)
do

end

The "ctx' provides additional information such as
-path_parameter(s): to get value associated with {order-id}
-uri_template: matching uri template that routed to this handler
- path: associated path in the url
-query_parameter(s)... from REQUEST
- request: associated REQUEST object

Server
Values

Values for variables, parameters, ...

Values

deferred WSF_VALUE with a "name’
WSF _STRING: foo=bar
WSF_ MULTIPLE STRING: foo=abc&foo=bar
WSF TABLE: foo[|[=a&foo[]=b
WSF UPLOADED FILE: uploaded file from form (POST)
WSF _ANY: use to store anything in execution_variable(s)

WSF_STRING has for instance
name: STRING 32
string: STRING _32
url_encoded_name: STRING_8
url_encoded_string: STRING_8

Questions ?

Questions ?

Questions ?

