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EWF what is that?

EWF stands for Eiffel Web Framework
 
Becoming the common platform to build web 
application with Eiffel.
 
Server application runs on any platform/HTTP 
server thanks to the Connectors
 
Also provide utility, client, ... components
 



EWF : community project

This is fully open source 
Written in void-safe Eiffel. 
Works with ISE Eiffel 6.8, 7.0, 7.1
Tested on Windows, Linux, 

with apache2, iis, CGI, FastCGI 
and EiffelWebNino
 

Home page: 
http://eiffel-world.github.com/Eiffel-Web-Framework/
 

Main contributors: 
Jocelyn Fiat and Javier Velilla

http://eiffel-world.github.com/Eiffel-Web-Framework/
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   WAMIE: Writing Apache Module In Eiffel
   Nino: Web server written in Eiffel
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Also client side

Also provides utility, client, ... components
● http client (simple client based on libcurl)
● error
● CONneg: Content negociation
● URI template  /order/{order-id}
● http: for status code constants and related
● encoder: base64,url,html,xml,json,utf8,...



Main class for server

Note: we dropped the WSF_ prefix in those slides
 
REQUEST : access data related to the http request
RESPONSE : media to send data back to the client
HTTP_HEADER : user friendly HTTP header builder
 
REQUEST_ROUTER,
REQUEST_HANDLER, and 
REQUEST_HANDLER_CONTEXT
 
SERVICE and DEFAULT_SERVICE_LAUNCHER
 



Server
Service

Execute request handling



Service
deferred class WSF_SERVICE
feature -- Execution

execute (req: WSF_REQUEST; res: WSF_RESPONSE)
deferred
end

end
-------------------------
class MY_SERVER
inherit WSF_SERVICE
create make_and_launch
feature
   make_and_launch
     local
  s: DEFAULT_SERVICE_LAUNCHER
     do

create package_manager.make (package_root)
create s.make_and_launch (agent execute)

     end
-- implement `execute'
 
 
 



Server
Request

request data coming from the client



REQUEST 1/3

WSF_REQUEST
- meta variables (see CGI meta variables)
  also available as functions: path_info, content_type, request_method, ...

- query parameter(s): extracted from QUERY_STRING

- form parameter(s) and uploaded_files
- cookie(s): extracted from input_data

- raw_input_data if enabled and input data processed ...

- script_url (..) to return url related to current query
Note: many plural functions return ITERABLE [WSF_VALUE], 
           to allow other WGI implementations to use LIST, HASH_TABLE, 
           or any DS_ flavours

../..



REQUEST 2/3

WSF_REQUEST   ../..
- wgi_connector: WGI_CONNECTOR
Even if EWF is portable, an application might want to know the 
underlying connector have adapt its behavior, or display more 
information.

- execution_variable(s): in addition to other variables and 
parameters, this can be use to keep some data globally associated to the 
request. A usual need would be SESSION, or Authorization which is 
computed once. 

- mime_handler (..) and register_mime_handler (..)
The mime handler are used to handle the input data according to the 
content-type (multipart_form_data, application/x-www-form-urlencoded). This allow 
the user to replace default behavior and register new (XForm, ...)



REQUEST 3/3

WSF_REQUEST   ../..
- input: INPUT_STREAM
- chunked_input: detachable CHUNKED_INPUT_STREAM
- is_chunked_input: BOOLEAN
Access to the input stream, either normal or chunked depending on the input 

transfer encoding.
So far, the INPUT_STREAM does not provide direct access to the underlying 

socket, pipe, file, ... however it provides read_character, read_string, ...
 
To be discussed...
input.associated_file: detachable FILE   could be an option. Either it is available 
or not ...



Server
Response

sending back to the client



RESPONSE 1/2

WSF_RESPONSE
- set_status_code
Depending on the connector, the status code can be sent or not

- put_header(_*)
3 Methods to put http header data 

- put_string (string)
Put string to the client

- put_substring (string, start_index,end_index)
Put substring to the client (mainly for performance)

- flush
Flush the data, in case there is any buffering

../..
 



RESPONSE  2/2

WSF_RESPONSE
../..
- put_chunk
When "Transfer-Encoding: chunked", put a chunk of response

- put_response (RESPONSE_MESSAGE)
Put an object containing status code, header and content to be sent

- redirect_* (..)
Various user friendly methods to send a redirection to the client

 
So far no direct access to the eventual output stream/socket/file/...
to be discussed for future version
 



Server
Request dispatcher / Router

dispatch request according to the request uri



REQUEST_ROUTER ...    1/4

Goal:      Provide friendly components to dispatch requests 
                 according to the request URI
 

 

Examples:
   - GET /order/123  -> return order identified by 123
   - POST /order/  -> create new order
   - POST /order/123 -> modify order identified by 123

      
     Do it yourself thanks to REQUEST.request_uri, 

or use the Router components
 
 



REQUEST_ROUTER ...    2/4
 

The WSF library provides (for now) 2 kinds of router
 
  - REQUEST_URI_ROUTER

router using simple URI : equivalent to starts_with (..)
 

  - REQUEST_URI_TEMPLATE_ROUTER
router using URI Template: matching the URI template such as

        /order/{order-id}
 

How to use ?  ...
 



REQUEST_ROUTER ..     3/4
 

Inherit from URI_TEMPLATE_ROUTED_SERVICE
define router, create_router, and setup_router
 

For instance
   setup_router
   do

router.map_with_request_methods (/orders/{order-id},  
                       orders_handler, <<"GET", "POST">>)

router.map_with_request_methods (/orders/,          
                       new_orders_handler, <<"POST">>)

router.map_with_request_methods (/orders/,          
                       all_orders_handler, <<"GET">>)

end

 
Just "map" a resource uri template, with a request handler, and precise the 
allowed request methods. ../..



REQUEST_ROUTER ..     4/4

And then handler should implement
execute (ctx: REQUEST_URI_TEMPLATE_HANDLER_CONTEXT; 

                         req: WSF_REQUEST; 
                         res: WSF_RESPONSE)
                do
                              ...
                end
 

The `ctx' provides additional information such as
- path_parameter(s):  to get value associated with {order-id} 

- uri_template: matching uri template that routed to this handler

- path: associated path in the url

- query_parameter(s)... from REQUEST

- request: associated REQUEST object



Server
Values

Values for variables, parameters, ...



Values

deferred WSF_VALUE with a `name'
WSF_STRING:   foo=bar

WSF_MULTIPLE_STRING: foo=abc&foo=bar

WSF_TABLE: foo[]=a&foo[]=b

WSF_UPLOADED_FILE:  uploaded file from form (POST)

WSF_ANY: use to store anything in execution_variable(s)
 
WSF_STRING has for instance

name: STRING_32
string: STRING_32
url_encoded_name: STRING_8
url_encoded_string: STRING_8



Questions ?

...
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