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EWF what i1s that?

EWTF stands for Eiffel Web Framework

Becoming the common platform to build web
application with Eiffel.

Server application runs on any platform/HTTP
server thanks to the Connectors

Also provide utility, client, ... components



EWF : community project

This is fully open source

Written in void-safe Eiffel.
Works with ISE Eiffel 6.8, 7.0, 7.1
Tested on Windows, Linux,
with apache2, iis, CGI, FastCGI
and EiffelWebNino

Home page:
http://eiffel-world.github.com/Eiffel-Web-Framework/

Main contributors:

Jocelyn Fiat and Javier Velilla


http://eiffel-world.github.com/Eiffel-Web-Framework/
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Also client side

Also provides utility, client, ... components

http client (simple client based on libcurl)
error

CONneg: Content negociation

URI template /order/{order-id}

http: for status code constants and related

encoder: base64,url,html,xml,json,utf8,...



Main class for server

Note: we dropped the WSF__ prefix in those slides

REQUEST : access data related to the http request
RESPONSE : media to send data back to the client
HTTP_HEADER : user friendly HTTP header builder

REQUEST ROUTER,

REQUEST_ HANDLER, and
REQUEST_HANDLER_CONTEXT

SERVICE and DEFAULT_SERVICE_LAUNCHER



Server
Service

Execute request handling




Service

deferred class WSF_SERVICE
feature -- Execution

execute (req: WSF_REQUEST; res: WSF_RESPONSE)
deferred
end

class MY_SERVER
inherit WSF_SERVICE
create make_and_launch

feature
make_and_launch

local
s: DEFAULT_SERVICE_LAUNCHER

do
create package_manager.make (package_root)
create s.make_and_launch (agent execute)

end

-- implement " execute'



Server
Request

request data coming from the client




REQUEST

WSF_REQUEST

- meta variables (see CGI meta variables)
also available as functions: path_info, content_type, request_method, ...

- query parameter(s): extracted from QUERY STRING
- form parameter(s) and uploaded_ files

- COOkie(S)Z extracted from input_data

- raw_input_data if enabled and input data processed ...

- SCI‘ipt_IlI‘l (..) to return url related to current query

Note: many plural functions return ITERABLE [WSF_VALUE],
to allow other WGI implementations to use LIST, HASH_TABLE,
or any DS__flavours



REQUEST

WSF_REQUEST ../..

- wgi_connector: WGI_CONNECTOR

Even if EWF is portable, an application might want to know the
underlying connector have adapt its behavior, or display more
information.

- execution_variable(s): in addition to other variables and
parameters, this can be use to keep some data globally associated to the
request. A usual need would be SESSION, or Authorization which is
computed once.

-mime_handler (..) and register_mime_handler (..)

The mime handler are used to handle the input data according to the
content-type (multipart_form_data, application/x-www-form-urlencoded). This allow
the user to replace default behavior and register new (XForm, ...)



REQUEST

WSF_REQUEST ../..
- input: INPUT_STREAM
- chunked_input: detachable CHUNKED_INPUT_STREAM
-is_chunked_input: BOOLEAN

Access to the input stream, either normal or chunked depending on the input
transfer encoding.

So far, the INPUT _STREAM does not provide direct access to the underlying
socket, pipe, file, ... however it provides read__character, read_string, ...

To be discussed...

input.associated_ file: detachable FILE could be an option. Either it is available
or not ...



Server
Response

sending back to the client




RESPONSE

WSF_RESPONSE

- set_status_code
Depending on the connector, the status code can be sent or not

- put_header(_*)

3 Methods to put http header data

- put_string (string)

Put string to the client

- put_substring (string, start_index,end_index)
Put substring to the client (mainly for performance)

- flush

Flush the data, in case there is any buffering

/..



RESPONSE

WSF RESPONSE
/..
- put_chunk

When "Transfer-Encoding: chunked', put a chunk of response

- put_response (RESPONSE__MESSAGE)

Put an object containing status code, header and content to be sent
- redirect_* (..)
Various user friendly methods to send a redirection to the client

So far no direct access to the eventual output stream/socket/file/ ...
to be discussed for future version



Server
Request dispatcher / Router

dispatch request according to the request uri




REQUEST _ROUTER... 1/4

Goal: Provide friendly components to dispatch requests
according to the request URI

Examples:
- GET /order/123 -> return order identified by 123

- POST /order/ -> create new order
- POST /order/123 -> modify order identified by 123

Do it yourself thanks to REQUEST.request_urti,
or use the Router components



REQUEST _ROUTER.. 2/4

The WSF library provides (for now) 2 kinds of router

- REQUEST_URI_ROUTER

router using simple URI : equivalent to starts_with (..)

- REQUEST_URI_TEMPLATE_ROUTER

router using URI Template: matching the URI template such as
/order/{order-id}

How touse ? ...



REQUEST ROUTER.. 3/4

Inherit from URI_ TEMPLATE ROUTED_SERVICE
define router, create_router, and setup_router

For instance

setup_router

do
router.map_with_request_methods (/orders/{order-id},

orders_handler, <<"GET", "POST">>)

router.map_with_request_methods (/orders/,
new_orders_handler, <<"POST">>)

router.map_with_request_methods (/orders/,
all_orders_handler, <<"GET">>)

end

Just "map" a resource uri template, with a request handler, and precise the
allowed request methods. o/



REQUEST ROUTER.. 4/4

And then handler should implement

execute (ctx: REQUEST_URI_TEMPLATE_HANDLER_CONTEXT;
req: WSF_REQUEST;

res: WSF_RESPONSE)
do

end

The "ctx' provides additional information such as
-path_parameter(s): to get value associated with {order-id}
-uri_template: matching uri template that routed to this handler
- path: associated path in the url
-query_parameter(s)... from REQUEST
- request: associated REQUEST object



Server
Values

Values for variables, parameters, ...




Values

deferred WSF_VALUE with a "name’
WSF _STRING: foo=bar
WSF_ MULTIPLE STRING: foo=abc&foo=bar
WSF TABLE: foo[ |[=a&foo[ ]=b
WSF UPLOADED FILE: uploaded file from form (POST)
WSF _ANY: use to store anything in execution_variable(s)

WSF_STRING has for instance
name: STRING 32
string: STRING _32
url_encoded_name: STRING_8
url_encoded_string: STRING_8



Questions ?
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