
EWF / March 2012
Quick presentation of Eiffel Web Framework

March the 15th, 2012

EWF what is that?

EWF stands for Eiffel Web Framework

Becoming the common platform to build web
application with Eiffel.

Server application runs on any platform/HTTP
server thanks to the Connectors

Also provide utility, client, ... components

EWF : community project

This is fully open source
Written in void-safe Eiffel.
Works with ISE Eiffel 6.8, 7.0, 7.1
Tested on Windows, Linux,

with apache2, iis, CGI, FastCGI
and EiffelWebNino

Home page:
http://eiffel-world.github.com/Eiffel-Web-Framework/

Main contributors:
Jocelyn Fiat and Javier Velilla

http://eiffel-world.github.com/Eiffel-Web-Framework/

Gateway
Interface

Apache2
IIS

LightTPD
Ningx

...

CGI

FCGI

SCGI

mod_ewsgi
apache2

Nino

 Eiffel
 Web
 Server
 Gateway
 Interface

Eiffel Web
Nino

pipe,
socket,...

Eiffel
Application

PersistenceGateway
Interface

Connectors

httpd
server

Platform and
web server

independant

Storable, XML,
JSON, SOS,
NoSQL, Abel,
EiffelStore, ...

CGI
interface

WAMIE

Notes:
 WAMIE: Writing Apache Module In Eiffel
 Nino: Web server written in Eiffel
 SOS: Simple Object Storage
 Abel: Unified Persistence layout

Connectors: web server support in EWSGI library

WSF

EWSGI
Connectors

Also client side

Also provides utility, client, ... components
● http client (simple client based on libcurl)
● error
● CONneg: Content negociation
● URI template /order/{order-id}
● http: for status code constants and related
● encoder: base64,url,html,xml,json,utf8,...

Main class for server

Note: we dropped the WSF_ prefix in those slides

REQUEST : access data related to the http request
RESPONSE : media to send data back to the client
HTTP_HEADER : user friendly HTTP header builder

REQUEST_ROUTER,
REQUEST_HANDLER, and
REQUEST_HANDLER_CONTEXT

SERVICE and DEFAULT_SERVICE_LAUNCHER

Server
Service

Execute request handling

Service
deferred class WSF_SERVICE
feature -- Execution

execute (req: WSF_REQUEST; res: WSF_RESPONSE)
deferred
end

end

class MY_SERVER
inherit WSF_SERVICE
create make_and_launch
feature
 make_and_launch
 local
 s: DEFAULT_SERVICE_LAUNCHER
 do

create package_manager.make (package_root)
create s.make_and_launch (agent execute)

 end
-- implement `execute'

Server
Request

request data coming from the client

REQUEST 1/3

WSF_REQUEST
- meta variables (see CGI meta variables)
 also available as functions: path_info, content_type, request_method, ...

- query parameter(s): extracted from QUERY_STRING

- form parameter(s) and uploaded_files
- cookie(s): extracted from input_data

- raw_input_data if enabled and input data processed ...

- script_url (..) to return url related to current query
Note: many plural functions return ITERABLE [WSF_VALUE],
 to allow other WGI implementations to use LIST, HASH_TABLE,
 or any DS_ flavours

../..

REQUEST 2/3

WSF_REQUEST ../..
- wgi_connector: WGI_CONNECTOR
Even if EWF is portable, an application might want to know the
underlying connector have adapt its behavior, or display more
information.

- execution_variable(s): in addition to other variables and
parameters, this can be use to keep some data globally associated to the
request. A usual need would be SESSION, or Authorization which is
computed once.

- mime_handler (..) and register_mime_handler (..)
The mime handler are used to handle the input data according to the
content-type (multipart_form_data, application/x-www-form-urlencoded). This allow
the user to replace default behavior and register new (XForm, ...)

REQUEST 3/3

WSF_REQUEST ../..
- input: INPUT_STREAM
- chunked_input: detachable CHUNKED_INPUT_STREAM
- is_chunked_input: BOOLEAN
Access to the input stream, either normal or chunked depending on the input

transfer encoding.
So far, the INPUT_STREAM does not provide direct access to the underlying

socket, pipe, file, ... however it provides read_character, read_string, ...

To be discussed...
input.associated_file: detachable FILE could be an option. Either it is available
or not ...

Server
Response

sending back to the client

RESPONSE 1/2

WSF_RESPONSE
- set_status_code
Depending on the connector, the status code can be sent or not

- put_header(_*)
3 Methods to put http header data

- put_string (string)
Put string to the client

- put_substring (string, start_index,end_index)
Put substring to the client (mainly for performance)

- flush
Flush the data, in case there is any buffering

../..

RESPONSE 2/2

WSF_RESPONSE
../..
- put_chunk
When "Transfer-Encoding: chunked", put a chunk of response

- put_response (RESPONSE_MESSAGE)
Put an object containing status code, header and content to be sent

- redirect_* (..)
Various user friendly methods to send a redirection to the client

So far no direct access to the eventual output stream/socket/file/...
to be discussed for future version

Server
Request dispatcher / Router

dispatch request according to the request uri

REQUEST_ROUTER ... 1/4

Goal: Provide friendly components to dispatch requests
 according to the request URI

Examples:
 - GET /order/123 -> return order identified by 123
 - POST /order/ -> create new order
 - POST /order/123 -> modify order identified by 123

 Do it yourself thanks to REQUEST.request_uri,

or use the Router components

REQUEST_ROUTER ... 2/4

The WSF library provides (for now) 2 kinds of router

 - REQUEST_URI_ROUTER

router using simple URI : equivalent to starts_with (..)

 - REQUEST_URI_TEMPLATE_ROUTER
router using URI Template: matching the URI template such as

 /order/{order-id}

How to use ? ...

REQUEST_ROUTER .. 3/4

Inherit from URI_TEMPLATE_ROUTED_SERVICE
define router, create_router, and setup_router

For instance
 setup_router
 do

router.map_with_request_methods (/orders/{order-id},
 orders_handler, <<"GET", "POST">>)

router.map_with_request_methods (/orders/,
 new_orders_handler, <<"POST">>)

router.map_with_request_methods (/orders/,
 all_orders_handler, <<"GET">>)

end

Just "map" a resource uri template, with a request handler, and precise the
allowed request methods. ../..

REQUEST_ROUTER .. 4/4

And then handler should implement
execute (ctx: REQUEST_URI_TEMPLATE_HANDLER_CONTEXT;

 req: WSF_REQUEST;
 res: WSF_RESPONSE)
 do
 ...
 end

The `ctx' provides additional information such as
- path_parameter(s): to get value associated with {order-id}

- uri_template: matching uri template that routed to this handler

- path: associated path in the url

- query_parameter(s)... from REQUEST

- request: associated REQUEST object

Server
Values

Values for variables, parameters, ...

Values

deferred WSF_VALUE with a `name'
WSF_STRING: foo=bar

WSF_MULTIPLE_STRING: foo=abc&foo=bar

WSF_TABLE: foo[]=a&foo[]=b

WSF_UPLOADED_FILE: uploaded file from form (POST)

WSF_ANY: use to store anything in execution_variable(s)

WSF_STRING has for instance

name: STRING_32
string: STRING_32
url_encoded_name: STRING_8
url_encoded_string: STRING_8

Questions ?

...

Questions ?

...

Questions ?

...

